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The environment calls on the entire research community to de-
fine long-term strategic goals for clean chemistry and to reduce
pollutants, especially organic solvents, whose recovery is man-
dated by evermore strict laws. To reduce the use of ecologically
hazardous chemicals, it is advantageous to carry out organic reac-
tions in aqueous media. Indeed, water is recognized as an attrac-
tive medium for many organic reactions. Reactions in aqueous
media are more environmentally safe, simple to handle, cheaper
to operate, and are especially important in industry.1,2

The Friedel–Crafts alkylation is a very important process for C–C
bond formation in organic chemistry.3 Various aromatic com-
pounds, including benzenes with electron-donating substituents,
furans, pyrroles, and indoles, have been applied successfully in a
number of Friedel–Crafts reactions with diverse electrophiles.
Enantioselective variants of this reaction have also been studied
in the presence of chiral metal complexes.4,5 Nevertheless, most re-
ports in this area are focused on relatively more reactive indole or
pyrrole derivatives.6 There are only a few reports on the Friedel–
Crafts reaction of benzene derivatives bearing highly electron-
donating groups.4e Hence, there is a need to develop novel
Friedel–Crafts reactions, especially for electron-rich arenes. Naph-
thols have been demonstrated to be good donors in Friedel–Crafts
alkylations with a range of electrophiles, and various biologically
active compounds and useful chiral ligands for asymmetric cataly-
sis can be prepared easily by this method.7,8 Although Friedel–
Crafts alkylations of naphthol derivatives with activated species
such as iminium ions,9 a,b-unsaturated olefins8a, and aza-dicarbox-
ylate7b are well studied, there is only one report on the reaction of
2-naphthol and nitroolefins in the literature.10

In continuation of our studies using water as catalyst or solvent
for organic transformations, and encouraged by our results using
water for Michael addition of amines and thiols to activated ole-
fins,11 and ring-opening of epoxides by amines in water,12 we envi-
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sioned that the Friedel–Crafts reaction between a nitrostyrene and
a 2,3-dihydroxy-naphthalene would be possible through activation
of the nitro group in the nitrostyrene and hydroxy groups in 2,3-
dihydroxynaphthalene through hydrogen bonding in aqueous
medium, Scheme 1.

A range of organic solvents were screened for the Friedel–Crafts
reaction of 2,3-dihydroxynaphthalene and 2-(2-nitrovinyl)thio-
phene.13 As shown in Table 1, we found that the best yield was ob-
tained in the presence of water. After optimization of the solvent,
we studied the reaction at different temperatures, and found out
that the best yield was obtained at 30 �C.

Having established the optimal reaction conditions, we next
expanded our study to other naphthols such as 2-naphthol 2 and
2,7-dihydroxynaphthalene 3. As shown in Table 2, 2,3-dihydroxy-
naphthalene and 2,7-dihydroxynaphthalene showed very good
reactivity towards 2-(2-nitrovinyl)-thiophene in the presence of
water, and good to excellent yields of products were obtained.
However, 2-naphthol gave only a moderate yield. Also, electron-
donating and electron-withdrawing groups on the phenyl ring of
the nitrostyrene decreased the yield of the reaction. Reaction of
1-naphthol with nitrostyrene gave low yields of the Friedel–Crafts
products (ca. less than 10%). We did not observe O-alkylation
products in these reactions, and only C-alkylation products were
obtained in all cases. Work-up was very simple, involving filtration
of the solid material or decanting the water. Purification was
accomplished by washing with hot petroleum ether or by using
OH

Scheme 1. Reaction of 2,3-dihydroxynaphthalene with 2-(2-nitrovinyl)thiophene
in the presence of water.



Table 1
Friedel–Crafts alkylation of 2,3-dihydroxy-naphthalene with 2-(2-nitrovinyl)thio-
phene in different solvents

Entry Solvent Yielda (%)

1 H2O 92
2 C2H5OH 30
3 CH3OH 38
4 CH3CN 60
5 CHCl3 52
6 THF 14
7 DMSO 50

a Yields based on 2-(2-nitrovinyl)thiophene.

Table 2
Catalyst-free Friedel–Crafts alkylation of naphthol 1, 2 or 3 with 2-(2-nitrovinyl)thi-
ophene, nitrostyrenes and 2-(2-nitrovinyl)furan in the presence of water at 30 �C

OHHOOH

OH

OH

1a 2b 3b

Entry Naphthol Yieldc (%)

1 S
NO2

1 92
2 2 57
3 3 75

4 NO2 1 87
5 2 55
6 3 60

7

NO2

NO2

1 50
8 2 45

9 O
NO2

1 93
10 2 55
11 3 80

12 NO2

Cl

1 75
13 2 40
14 3 33

15
NO2

OMe
2 40

a Reaction conditions: naphthol 1 (1 mmol), nitrostyrene (1.1 mmol).
b Reaction conditions: naphthol 2 or 3 (1.1 mmol), nitrostyrene (1 mmol).
c Isolated yields.
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Scheme 2. Reaction of 2-naphthalenethiol and 2-amino-naphthalene with 2-(2-
nitrovinyl)thiophene in the presence of water.

Table 3
Calculated parameters for 2,3-dihydroxynaphthalene in different solvents using the
HF/6-311G** basis set

Solvent l (Debye)a db DG#c

H2O 3.7116 �0.116498 �11.63
Gas phase 2.6349 �0.085354 —
C2H5OH 3.6459 �0.115057 �11.26
CH3OH 3.6702 �0.115678 �14.29
CHCl3 3.1458 �0.092739 �3.75
Toluene 2.9555 �0.089616 �2.95
CH3CN 3.3577 �0.095791 �2.13
DMSO 3.3669 �0.095831 �5.95
Acetone 3.3282 �0.095397 �6.27
THF 3.2263 �0.093837 �4.57
CH3NO2 3.3595 �0.095824 �5.07

a Dipole moment for 2,3-dihydroxynaphthalene in different solvents.
b Partial charge on C-1 of 2,3-dihydroxynaphthalene.
c Solvation energy.
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column chromatography (silica gel, ethyl acetate: petroleum
ether). Reaction of 2-naphthalenethiol and 2-amino- naphthalene
with 2-(2-nitrovinyl)thiophene gave the corresponding thia and
aza-Michael addition products in 100% yields, Scheme 2.

Theoretical calculations to determine the optimized parameters
(dipole moment, solvation energy, and partial charge on the a-po-
sition) of 2,3-dihydroxynaphthalene were performed with the HF/
6-311G** basis set using Gaussian software. As shown in Table 3,
the dipole moment and the partial charge on the a-position of
2,3-dihydroxynaphthalene in water are greater than in organic
solvents, which may ascribe the higher nucleophilic ability of the
a-carbon in 2,3-dihydroxy-naphthalene toward electrophiles.

In conclusion, we have reported a very mild, simple, and cata-
lyst-free method for the Friedel–Crafts alkylation of naphthols in
aqueous medium. The yields are good to excellent, and the work-
up is very simple especially on large scale.
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